62 research outputs found

    Cosmological constraints on unparticle dark matter

    Full text link
    In unparticle dark matter (unmatter) models the equation of state of the unmatter is given by p=ρ/(2dU+1)p=\rho/(2d_U+1), where dUd_U is the scaling factor. Unmatter with such equations of state would have a significant impact on the expansion history of the universe. Using type Ia supernovae (SNIa), the baryon acoustic oscillation (BAO) measurements and the shift parameter of the cosmic microwave background (CMB) to place constraints on such unmatter models we find that if only the SNIa data is used the constraints are weak. However, with the BAO and CMB shift parameter data added strong constraints can be obtained. For the Λ\LambdaUDM model, in which unmatter is the sole dark matter, we find that dU>60d_U > 60 at 95% C.L. For comparison, in most unparticle physics models it is assumed dU<2d_U<2. For the Λ\LambdaCUDM model, in which unmatter co-exists with cold dark matter, we found that the unmatter can at most make up a few percent of the total cosmic density if dU<10d_U<10, thus it can not be the major component of dark matter.Comment: Replaced with revised version. BAO data is added to make a tighter constraint. Version accepted for publication on Euro.Phys.J.

    The Nearby Supernova Factory

    Get PDF
    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at redshifts 0.03<z<0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ~12 SNe/month in 2003.Comment: 7 pages, 3 figures to be published in New Astronomy Review

    Displaying the Heterogeneity of the SN 2002cx-like Subclass of Type Ia Supernovae with Observations of the Pan-STARRS-1 Discovered SN2009ku

    Full text link
    SN2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SNIa), and a member of the distinct SN2002cx-like class of SNeIa. Its light curves are similar to the prototypical SN2002cx, but are slightly broader and have a later rise to maximum in g. SN2009ku is brighter (~0.6 mag) than other SN2002cx-like objects, peaking at M_V = -18.4 mag - which is still significantly fainter than typical SNeIa. SN2009ku, which had an ejecta velocity of ~2000 kms^-1 at 18 days after maximum brightness is spectroscopically most similar to SN2008ha, which also had extremely low-velocity ejecta. However, SN2008ha had an exceedingly low luminosity, peaking at M_V = -14.2 mag, ~4 mag fainter than SN2009ku. The contrast of high luminosity and low ejecta velocity for SN2009ku is contrary to an emerging trend seen for the SN2002cx class. SN2009ku is a counter-example of a previously held belief that the class was more homogeneous than typical SNeIa, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN2009ku is an indication of the potential for these surveys to find rare and interesting objects.Comment: 7 pages, 3 figure

    Probing Dark Energy with Supernovae : Bias from the time evolution of the equation of state

    Full text link
    Observation of thousands of type Ia supernovae should offer the most direct approach to probe the dark energy content of the universe. This will be undertaken by future large ground-based surveys followed by a space mission (SNAP/JDEM). We address the problem of extracting the cosmological parameters from the future data in a model independent approach, with minimal assumptions on the prior knowledge of some parameters. We concentrate on the comparison between a fiducial model and the fitting function and adress in particular the effect of neglecting (or not) the time evolution of the equation of state. We present a quantitative analysis of the bias which can be introduced by the fitting procedure. Such bias cannot be ignored as soon as the statistical errors from present data are drastically improved.Comment: 22 pages, 10 figures, submitted to Phys. Rev.

    Is the evidence for dark energy secure?

    Full text link
    Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann-Robertson-Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass 0.5 eV. Although such an Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the `baryon acoustic oscillation' peak in the autocorrelation function of galaxies, it may be possible to do so e.g. in an inhomogeneous Lemaitre-Tolman-Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references reformatted in journal style - text unchange

    Selection of Burst-like Transients and Stochastic Variables Using Multi-band Image Differencing in the PAN-STARRS1 Medium-deep Survey

    Get PDF
    We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g P1, r P1, i P1, and z P1. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and an analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to define a robust photometric sample of 1233 AGNs and 812 SNe. With these two samples, we characterize their variability and host galaxy properties, and identify simple photometric priors that would enable their real-time identification in future wide-field synoptic survey

    Star Models with Dark Energy

    Full text link
    We have constructed star models consisting of four parts: (i) a homogeneous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exterior Schwarzschild spacetime. We have analyzed all the energy conditions for the core, envelope and the two thin shells. We have found that, in order to have static solutions, at least one of the regions must be constituted by dark energy. The results show that there is no physical reason to have a superior limit for the mass of these objects but for the ratio of mass and radius.Comment: 20 pages, 1 figure, references and some comments added, typos corrected, in press GR

    Interacting Agegraphic Dark Energy

    Full text link
    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\'{a}rolyh\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed.Comment: 10 pages, 5 figures, revtex4; v2: references added; v3: accepted by Eur. Phys. J. C; v4: published versio
    corecore